A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data

18 Jan 2018Yunchuan KongTianwei Yu

Gene expression data represents a unique challenge in predictive model building, because of the small number of samples $(n)$ compared to the huge amount of features $(p)$. This "$n<<p$" property has hampered application of deep learning techniques for disease outcome classification... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet