A Hierarchy for Replica Quantum Advantage

10 Nov 2021  ·  Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, Jerry Li ·

We prove that given the ability to make entangled measurements on at most $k$ replicas of an $n$-qubit state $\rho$ simultaneously, there is a property of $\rho$ which requires at least order $2^n$ measurements to learn. However, the same property only requires one measurement to learn if we can make an entangled measurement over a number of replicas polynomial in $k, n$. Because the above holds for each positive integer $k$, we obtain a hierarchy of tasks necessitating progressively more replicas to be performed efficiently. We introduce a powerful proof technique to establish our results, and also use this to provide new bounds for testing the mixedness of a quantum state.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here