A Hybrid Iterative Numerical Transferable Solver (HINTS) for PDEs Based on Deep Operator Network and Relaxation Methods

28 Aug 2022  ·  Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, George Em Karniadakis ·

Iterative solvers of linear systems are a key component for the numerical solutions of partial differential equations (PDEs). While there have been intensive studies through past decades on classical methods such as Jacobi, Gauss-Seidel, conjugate gradient, multigrid methods and their more advanced variants, there is still a pressing need to develop faster, more robust and reliable solvers. Based on recent advances in scientific deep learning for operator regression, we propose HINTS, a hybrid, iterative, numerical, and transferable solver for differential equations. HINTS combines standard relaxation methods and the Deep Operator Network (DeepONet). Compared to standard numerical solvers, HINTS is capable of providing faster solutions for a wide class of differential equations, while preserving the accuracy close to machine zero. Through an eigenmode analysis, we find that the individual solvers in HINTS target distinct regions in the spectrum of eigenmodes, resulting in a uniform convergence rate and hence exceptional performance of the hybrid solver overall. Moreover, HINTS applies to equations in multidimensions, and is flexible with regards to computational domain and transferable to different discretizations.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here