A Kernel Test of Goodness of Fit

9 Feb 2016  ·  Kacper Chwialkowski, Heiko Strathmann, Arthur Gretton ·

We propose a nonparametric statistical test for goodness-of-fit: given a set of samples, the test determines how likely it is that these were generated from a target density function. The measure of goodness-of-fit is a divergence constructed via Stein's method using functions from a Reproducing Kernel Hilbert Space. Our test statistic is based on an empirical estimate of this divergence, taking the form of a V-statistic in terms of the log gradients of the target density and the kernel. We derive a statistical test, both for i.i.d. and non-i.i.d. samples, where we estimate the null distribution quantiles using a wild bootstrap procedure. We apply our test to quantifying convergence of approximate Markov Chain Monte Carlo methods, statistical model criticism, and evaluating quality of fit vs model complexity in nonparametric density estimation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here