A Language-Based Approach to Fake News Detection Through Interpretable Features and BRNN

RDSM (COLING) 2020  ·  Yu Qiao, Daniel Wiechmann, Elma Kerz ·

‘Fake news’ – succinctly defined as false or misleading information masquerading as legitimate news – is a ubiquitous phenomenon and its dissemination weakens the fact-based reporting of the established news industry, making it harder for political actors, authorities, media and citizens to obtain a reliable picture. State-of-the art language-based approaches to fake news detection that reach high classification accuracy typically rely on black box models based on word embeddings. At the same time, there are increasing calls for moving away from black-box models towards white-box (explainable) models for critical industries such as healthcare, finances, military and news industry. In this paper we performed a series of experiments where bi-directional recurrent neural network classification models were trained on interpretable features derived from multi-disciplinary integrated approaches to language. We apply our approach to two benchmark datasets. We demonstrate that our approach is promising as it achieves similar results on these two datasets as the best performing black box models reported in the literature. In a second step we report on ablation experiments geared towards assessing the relative importance of the human-interpretable features in distinguishing fake news from real news.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here