A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables

NeurIPS 2013 Jing XiangSeyoung Kim

We address the problem of learning a sparse Bayesian network structure for continuous variables in a high-dimensional space. The constraint that the estimated Bayesian network structure must be a directed acyclic graph (DAG) makes the problem challenging because of the huge search space of network structures... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.