A Light Touch for Heavily Constrained SGD

15 Dec 2015  ·  Andrew Cotter, Maya Gupta, Jan Pfeifer ·

Minimizing empirical risk subject to a set of constraints can be a useful strategy for learning restricted classes of functions, such as monotonic functions, submodular functions, classifiers that guarantee a certain class label for some subset of examples, etc. However, these restrictions may result in a very large number of constraints. Projected stochastic gradient descent (SGD) is often the default choice for large-scale optimization in machine learning, but requires a projection after each update. For heavily-constrained objectives, we propose an efficient extension of SGD that stays close to the feasible region while only applying constraints probabilistically at each iteration. Theoretical analysis shows a compelling trade-off between per-iteration work and the number of iterations needed on problems with a large number of constraints.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods