A Lightweight Algorithm to Uncover Deep Relationships in Data Tables

7 Sep 2020  ·  Jin Cao, Yibo Zhao, Linjun Zhang, Jason Li ·

Many data we collect today are in tabular form, with rows as records and columns as attributes associated with each record. Understanding the structural relationship in tabular data can greatly facilitate the data science process. Traditionally, much of this relational information is stored in table schema and maintained by its creators, usually domain experts. In this paper, we develop automated methods to uncover deep relationships in a single data table without expert or domain knowledge. Our method can decompose a data table into layers of smaller tables, revealing its deep structure. The key to our approach is a computationally lightweight forward addition algorithm that we developed to recursively extract the functional dependencies between table columns that are scalable to tables with many columns. With our solution, data scientists will be provided with automatically generated, data-driven insights when exploring new data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here