A machine learning approach for efficient multi-dimensional integration

14 Sep 2020  ·  Boram Yoon ·

We propose a novel multi-dimensional integration algorithm using a machine learning (ML) technique. After training a ML regression model to mimic a target integrand, the regression model is used to evaluate an approximation of the integral. Then, the difference between the approximation and the true answer is calculated to correct the bias in the approximation of the integral induced by a ML prediction error. Because of the bias correction, the final estimate of the integral is unbiased and has a statistically correct error estimation. The performance of the proposed algorithm is demonstrated on six different types of integrands at various dimensions and integrand difficulties. The results show that, for the same total number of integrand evaluations, the new algorithm provides integral estimates with more than an order of magnitude smaller uncertainties than those of the VEGAS algorithm in most of the test cases.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here