A machine-learning software-systems approach to capture social, regulatory, governance, and climate problems

23 Feb 2020 Christopher A. Tucker

This paper will discuss the role of an artificially-intelligent computer system as critique-based, implicit-organizational, and an inherently necessary device, deployed in synchrony with parallel governmental policy, as a genuine means of capturing nation-population complexity in quantitative form, public contentment in societal-cooperative economic groups, regulatory proposition, and governance-effectiveness domains. It will discuss a solution involving a well-known algorithm and proffer an improved mechanism for knowledge-representation, thereby increasing range of utility, scope of influence (in terms of differentiating class sectors) and operational efficiency... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet