A maximum principle argument for the uniform convergence of graph Laplacian regressors

29 Jan 2019Nicolas Garcia TrillosRyan Murray

This paper investigates the use of methods from partial differential equations and the Calculus of variations to study learning problems that are regularized using graph Laplacians. Graph Laplacians are a powerful, flexible method for capturing local and global geometry in many classes of learning problems, and the techniques developed in this paper help to broaden the methodology of studying such problems... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet