A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings

NeurIPS 2020  ·  Jun-Hyung Park, Krikamol Muandet ·

We present an operator-free, measure-theoretic approach to the conditional mean embedding (CME) as a random variable taking values in a reproducing kernel Hilbert space. While the kernel mean embedding of unconditional distributions has been defined rigorously, the existing operator-based approach of the conditional version depends on stringent assumptions that hinder its analysis. We overcome this limitation via a measure-theoretic treatment of CMEs. We derive a natural regression interpretation to obtain empirical estimates, and provide a thorough theoretical analysis thereof, including universal consistency. As natural by-products, we obtain the conditional analogues of the maximum mean discrepancy and Hilbert-Schmidt independence criterion, and demonstrate their behaviour via simulations.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here