A Model Counter's Guide to Probabilistic Systems

22 Mar 2019  ·  Marcell Vazquez-Chanlatte, Markus N. Rabe, Sanjit A. Seshia ·

In this paper, we systematize the modeling of probabilistic systems for the purpose of analyzing them with model counting techniques. Starting from unbiased coin flips, we show how to model biased coins, correlated coins, and distributions over finite sets. From there, we continue with modeling sequential systems, such as Markov chains, and revisit the relationship between weighted and unweighted model counting. Thereby, this work provides a conceptual framework for deriving #SAT encodings for probabilistic inference.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here