A Multi-Metric Latent Factor Model for Analyzing High-Dimensional and Sparse data

16 Apr 2022  ·  Di wu, Peng Zhang, Yi He, Xin Luo ·

High-dimensional and sparse (HiDS) matrices are omnipresent in a variety of big data-related applications. Latent factor analysis (LFA) is a typical representation learning method that extracts useful yet latent knowledge from HiDS matrices via low-rank approximation. Current LFA-based models mainly focus on a single-metric representation, where the representation strategy designed for the approximation Loss function, is fixed and exclusive. However, real-world HiDS matrices are commonly heterogeneous and inclusive and have diverse underlying patterns, such that a single-metric representation is most likely to yield inferior performance. Motivated by this, we in this paper propose a multi-metric latent factor (MMLF) model. Its main idea is two-fold: 1) two vector spaces and three Lp-norms are simultaneously employed to develop six variants of LFA model, each of which resides in a unique metric representation space, and 2) all the variants are ensembled with a tailored, self-adaptive weighting strategy. As such, our proposed MMLF enjoys the merits originated from a set of disparate metric spaces all at once, achieving the comprehensive and unbiased representation of HiDS matrices. Theoretical study guarantees that MMLF attains a performance gain. Extensive experiments on eight real-world HiDS datasets, spanning a wide range of industrial and science domains, verify that our MMLF significantly outperforms ten state-of-the-art, shallow and deep counterparts.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here