A multi-task convolutional neural network for mega-city analysis using very high resolution satellite imagery and geospatial data

26 Feb 2017  ·  Fan Zhang, Bo Du, Liangpei Zhang ·

Mega-city analysis with very high resolution (VHR) satellite images has been drawing increasing interest in the fields of city planning and social investigation. It is known that accurate land-use, urban density, and population distribution information is the key to mega-city monitoring and environmental studies. Therefore, how to generate land-use, urban density, and population distribution maps at a fine scale using VHR satellite images has become a hot topic. Previous studies have focused solely on individual tasks with elaborate hand-crafted features and have ignored the relationship between different tasks. In this study, we aim to propose a universal framework which can: 1) automatically learn the internal feature representation from the raw image data; and 2) simultaneously produce fine-scale land-use, urban density, and population distribution maps. For the first target, a deep convolutional neural network (CNN) is applied to learn the hierarchical feature representation from the raw image data. For the second target, a novel CNN-based universal framework is proposed to process the VHR satellite images and generate the land-use, urban density, and population distribution maps. To the best of our knowledge, this is the first CNN-based mega-city analysis method which can process a VHR remote sensing image with such a large data volume. A VHR satellite image (1.2 m spatial resolution) of the center of Wuhan covering an area of 2606 km2 was used to evaluate the proposed method. The experimental results confirm that the proposed method can achieve a promising accuracy for land-use, urban density, and population distribution maps.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here