A new class of generative classifiers based on staged tree models

26 Dec 2020  ·  Federico Carli, Manuele Leonelli, Gherardo Varando ·

Generative models for classification use the joint probability distribution of the class variable and the features to construct a decision rule. Among generative models, Bayesian networks and naive Bayes classifiers are the most commonly used and provide a clear graphical representation of the relationship among all variables. However, these have the disadvantage of highly restricting the type of relationships that could exist, by not allowing for context-specific independences. Here we introduce a new class of generative classifiers, called staged tree classifiers, which formally account for context-specific independence. They are constructed by a partitioning of the vertices of an event tree from which conditional independence can be formally read. The naive staged tree classifier is also defined, which extends the classic naive Bayes classifier whilst retaining the same complexity. An extensive simulation study shows that the classification accuracy of staged tree classifiers is competitive with that of state-of-the-art classifiers and an example showcases their use in practice.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here