A New Family of Near-metrics for Universal Similarity

21 Jul 2017Chu WangIraj SanieeWilliam S. KennedyChris A. White

We propose a family of near-metrics based on local graph diffusion to capture similarity for a wide class of data sets. These quasi-metametrics, as their names suggest, dispense with one or two standard axioms of metric spaces, specifically distinguishability and symmetry, so that similarity between data points of arbitrary type and form could be measured broadly and effectively... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet