A New Neuromorphic Computing Approach for Epileptic Seizure Prediction

25 Feb 2021  ·  Fengshi Tian, Jie Yang, Shiqi Zhao, Mohamad Sawan ·

Several high specificity and sensitivity seizure prediction methods with convolutional neural networks (CNNs) are reported. However, CNNs are computationally expensive and power hungry. These inconveniences make CNN-based methods hard to be implemented on wearable devices. Motivated by the energy-efficient spiking neural networks (SNNs), a neuromorphic computing approach for seizure prediction is proposed in this work. This approach uses a designed gaussian random discrete encoder to generate spike sequences from the EEG samples and make predictions in a spiking convolutional neural network (Spiking-CNN) which combines the advantages of CNNs and SNNs. The experimental results show that the sensitivity, specificity and AUC can remain 95.1%, 99.2% and 0.912 respectively while the computation complexity is reduced by 98.58% compared to CNN, indicating that the proposed Spiking-CNN is hardware friendly and of high precision.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here