A Non-convex One-Pass Framework for Generalized Factorization Machine and Rank-One Matrix Sensing

NeurIPS 2016  ·  Ming Lin, Jieping Ye ·

We develop an efficient alternating framework for learning a generalized version of Factorization Machine (gFM) on steaming data with provable guarantees. When the instances are sampled from $d$ dimensional random Gaussian vectors and the target second order coefficient matrix in gFM is of rank $k$, our algorithm converges linearly, achieves $O(\epsilon)$ recovery error after retrieving $O(k^{3}d\log(1/\epsilon))$ training instances, consumes $O(kd)$ memory in one-pass of dataset and only requires matrix-vector product operations in each iteration... The key ingredient of our framework is a construction of an estimation sequence endowed with a so-called Conditionally Independent RIP condition (CI-RIP). As special cases of gFM, our framework can be applied to symmetric or asymmetric rank-one matrix sensing problems, such as inductive matrix completion and phase retrieval. read more

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here