A note on the capacity of the binary perceptron

22 Jan 2024  ·  Dylan J. Altschuler, Konstantin Tikhomirov ·

Determining the capacity $\alpha_c$ of the Binary Perceptron is a long-standing problem. Krauth and Mezard (1989) conjectured an explicit value of $\alpha_c$, approximately equal to .833, and a rigorous lower bound matching this prediction was recently established by Ding and Sun (2019). Regarding the upper bound, Kim and Roche (1998) and Talagrand (1999) independently showed that $\alpha_c$ < .996, while Krauth and Mezard outlined an argument which can be used to show that $\alpha_c$ < .847. The purpose of this expository note is to record a complete proof of the bound $\alpha_c$ < .847. The proof is a conditional first moment method combined with known results on the spherical perceptron

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here