A note on the option price and 'Mass at zero in the uncorrelated SABR model and implied volatility asymptotics'

1 Nov 2020  ·  Jaehyuk Choi, Lixin Wu ·

Gulisashvili et al. [Quant. Finance, 2018, 18(10), 1753-1765] provide a small-time asymptotics for the mass at zero under the uncorrelated stochastic-alpha-beta-rho (SABR) model by approximating the integrated variance with a moment-matched lognormal distribution. We improve the accuracy of the numerical integration by using the Gauss--Hermite quadrature. We further obtain the option price by integrating the constant elasticity of variance (CEV) option prices in the same manner without resorting to the small-strike volatility smile asymptotics of De Marco et al. [SIAM J. Financ. Math., 2017, 8(1), 709-737]. For the uncorrelated SABR model, the new option pricing method is accurate and arbitrage-free across all strike prices.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here