A Note on the Representation Power of GHHs

27 Jan 2021  ·  Zhou Lu ·

In this note we prove a sharp lower bound on the necessary number of nestings of nested absolute-value functions of generalized hinging hyperplanes (GHH) to represent arbitrary CPWL functions. Previous upper bound states that $n+1$ nestings is sufficient for GHH to achieve universal representation power, but the corresponding lower bound was unknown. We prove that $n$ nestings is necessary for universal representation power, which provides an almost tight lower bound. We also show that one-hidden-layer neural networks don't have universal approximation power over the whole domain. The analysis is based on a key lemma showing that any finite sum of periodic functions is either non-integrable or the zero function, which might be of independent interest.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here