A Novel 3D Non-Stationary Channel Model for 6G Indoor Visible Light Communication Systems

6 Apr 2022  ·  Xiuming Zhu, Cheng-Xiang Wang, Jie Huang, Ming Chen, Harald Haas ·

The visible light communication (VLC) technology has attracted much attention in the research of the sixth generation (6G) communication systems. In this paper, a novel three dimensional (3D) space-time-frequency non-stationary geometry-based stochastic model (GBSM) is proposed for indoor VLC channels. The proposed VLC GBSM can capture unique indoor VLC channel characteristics such as the space-time-frequency non-stationarity caused by large light-emitting diode (LED) arrays in indoor scenarios, long travelling paths, and large bandwidths of visible light waves, respectively. In addition, the proposed model can support special radiation patterns of LEDs, 3D translational and rotational motions of the optical receiver (Rx), and can be applied to angle diversity receivers (ADRs). Key channel properties are simulated and analyzed, including the space-time-frequency correlation function (STFCF), received power, root mean square (RMS) delay spread, and path loss (PL). Simulation results verify the space-time-frequency non-stationarity in indoor VLC channels. Finally, the accuracy and practicality of the proposed model are validated by comparing the simulation result of channel 3dB bandwidth with the existing measurement data. The proposed channel model will play a supporting role in the design of future 6G VLC systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here