A novel active learning framework for classification: using weighted rank aggregation to achieve multiple query criteria

27 Sep 2018  ·  Yu Zhao, Zhenhui Shi, Jingyang Zhang, Dong Chen, Lixu Gu ·

Multiple query criteria active learning (MQCAL) methods have a higher potential performance than conventional active learning methods in which only one criterion is deployed for sample selection. A central issue related to MQCAL methods concerns the development of an integration criteria strategy (ICS) that makes full use of all criteria. The conventional ICS adopted in relevant research all facilitate the desired effects, but several limitations still must be addressed. For instance, some of the strategies are not sufficiently scalable during the design process, and the number and type of criteria involved are dictated. Thus, it is challenging for the user to integrate other criteria into the original process unless modifications are made to the algorithm. Other strategies are too dependent on empirical parameters, which can only be acquired by experience or cross-validation and thus lack generality; additionally, these strategies are counter to the intention of active learning, as samples need to be labeled in the validation set before the active learning process can begin. To address these limitations, we propose a novel MQCAL method for classification tasks that employs a third strategy via weighted rank aggregation. The proposed method serves as a heuristic means to select high-value samples of high scalability and generality and is implemented through a three-step process: (1) the transformation of the sample selection to sample ranking and scoring, (2) the computation of the self-adaptive weights of each criterion, and (3) the weighted aggregation of each sample rank list. Ultimately, the sample at the top of the aggregated ranking list is the most comprehensively valuable and must be labeled. Several experiments generating 257 wins, 194 ties and 49 losses against other state-of-the-art MQCALs are conducted to verify that the proposed method can achieve superior results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here