A Parallel and Efficient Algorithm for Learning to Match

22 Oct 2014 Jingbo Shang Tianqi Chen Hang Li Zhengdong Lu Yong Yu

Many tasks in data mining and related fields can be formalized as matching between objects in two heterogeneous domains, including collaborative filtering, link prediction, image tagging, and web search. Machine learning techniques, referred to as learning-to-match in this paper, have been successfully applied to the problems... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet