A Parallel Framework for Parametric Maximum Flow Problems in Image Segmentation

20 Sep 2015  ·  Vlad Olaru, Mihai Florea, Cristian Sminchisescu ·

This paper presents a framework that supports the implementation of parallel solutions for the widespread parametric maximum flow computational routines used in image segmentation algorithms. The framework is based on supergraphs, a special construction combining several image graphs into a larger one, and works on various architectures (multi-core or GPU), either locally or remotely in a cluster of computing nodes. The framework can also be used for performance evaluation of parallel implementations of maximum flow algorithms. We present the case study of a state-of-the-art image segmentation algorithm based on graph cuts, Constrained Parametric Min-Cut (CPMC), that uses the parallel framework to solve parametric maximum flow problems, based on a GPU implementation of the well-known push-relabel algorithm. Our results indicate that real-time implementations based on the proposed techniques are possible.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here