Multiple-image encryption and hiding with an optical diffractive neural network

21 Feb 2019  ·  Yang Gao, Shuming Jiao, Juncheng Fang, Ting Lei, Zhenwei Xie, Xiaocong Yuan ·

A cascaded phase-only mask architecture (or an optical diffractive neural network) can be employed for different optical information processing tasks such as pattern recognition, orbital angular momentum (OAM) mode conversion, image salience detection and image encryption. However, for optical encryption and watermarking applications, such a system usually cannot process multiple pairs of input images and output images simultaneously. In our proposed scheme, multiple input images can be simultaneously fed to an optical diffractive neural network (DNN) system and each corresponding output image will be displayed in a non-overlap sub-region in the output imaging plane. Each input image undergoes a different optical transform in an independent channel within the same system. The multiple cascaded phase masks in the system can be effectively optimized by a wavefront matching algorithm. Similar to recent optical pattern recognition and mode conversion works, the orthogonality property is employed to design a multiplexed DNN.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here