A Parameter-free Hedging Algorithm

NeurIPS 2009  ·  Kamalika Chaudhuri, Yoav Freund, Daniel J. Hsu ·

We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large... Previous algorithms for learning in this framework have a tunable learning rate parameter, and a major barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly when the number of actions is large. In this paper, we offer a clean solution by proposing a novel and completely parameter-free algorithm for DTOL. In addition, we introduce a new notion of regret, which is more natural for applications with a large number of actions. We show that our algorithm achieves good performance with respect to this new notion of regret; in addition, it also achieves performance close to that of the best bounds achieved by previous algorithms with optimally-tuned parameters, according to previous notions of regret. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here