A Partially Rule-Based Approach to AMR Generation

NAACL 2019  ·  Emma Manning ·

This paper presents a new approach to generating English text from Abstract Meaning Representation (AMR). In contrast to the neural and statistical MT approaches used in other AMR generation systems, this one is largely rule-based, supplemented only by a language model and simple statistical linearization models, allowing for more control over the output. We also address the difficulties of automatically evaluating AMR generation systems and the problems with BLEU for this task. We compare automatic metrics to human evaluations and show that while METEOR and TER arguably reflect human judgments better than BLEU, further research into suitable evaluation metrics is needed.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here