A Passivity Interpretation of Energy-Based Forced Oscillation Source Location Methods

12 Jun 2019  ·  Samuel Chevalier, Petr Vorobev, Konstantin Turitsyn ·

This paper develops a systematic framework for analyzing how low frequency forced oscillations propagate in electric power systems. Using this framework, the paper shows how to mathematically justify the so-called Dissipating Energy Flow (DEF) forced oscillation source location technique. The DEF's specific deficiencies are pinpointed, and its underlying energy function is analyzed via incremental passivity theory. This analysis is then used to prove that there exists no passivity transformation (i.e. quadratic energy function) which can simultaneously render all components of a lossy classical power system passive. The paper goes on to develop a simulation-free algorithm for predicting the performance of the DEF method in a generalized power system, and it analyzes the passivity of three non-classical load and generation components. The proposed propagation framework and performance algorithm are both tested and illustrated on the IEEE 39-bus New England system and the WECC 179-bus system.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here