A Powerful Genetic Algorithm for Traveling Salesman Problem

This paper presents a powerful genetic algorithm(GA) to solve the traveling salesman problem (TSP). To construct a powerful GA, I use edge swapping(ES) with a local search procedure to determine good combinations of building blocks of parent solutions for generating even better offspring solutions. Experimental results on well studied TSP benchmarks demonstrate that the proposed GA is competitive in finding very high quality solutions on instances with up to 16,862 cities.

Results in Papers With Code
(↓ scroll down to see all results)