A priori estimates for classification problems using neural networks

28 Sep 2020  ·  Weinan E, Stephan Wojtowytsch ·

We consider binary and multi-class classification problems using hypothesis classes of neural networks. For a given hypothesis class, we use Rademacher complexity estimates and direct approximation theorems to obtain a priori error estimates for regularized loss functionals.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here