A Priori Estimates of the Generalization Error for Two-layer Neural Networks

ICLR 2019  ·  Lei Wu, Chao Ma, Weinan E ·

New estimates for the generalization error are established for a nonlinear regression problem using a two-layer neural network model. These new estimates are a priori in nature in the sense that the bounds depend only on some norms of the underlying functions to be fitted, not the parameters in the model. In contrast, most existing results for neural networks are a posteriori in nature in the sense that the bounds depend on some norms of the model parameters. The error rates are comparable to that of the Monte Carlo method in terms of the size of the dataset. Moreover, these bounds are equally effective in the over-parametrized regime when the network size is much larger than the size of the dataset.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here