A Probabilistic Linear Genetic Programming with Stochastic Context-Free Grammar for solving Symbolic Regression problems

3 Apr 2017  ·  Léo Françoso Dal Piccol Sotto, Vinícius Veloso de Melo ·

Traditional Linear Genetic Programming (LGP) algorithms are based only on the selection mechanism to guide the search. Genetic operators combine or mutate random portions of the individuals, without knowing if the result will lead to a fitter individual. Probabilistic Model Building Genetic Programming (PMB-GP) methods were proposed to overcome this issue through a probability model that captures the structure of the fit individuals and use it to sample new individuals. This work proposes the use of LGP with a Stochastic Context-Free Grammar (SCFG), that has a probability distribution that is updated according to selected individuals. We proposed a method for adapting the grammar into the linear representation of LGP. Tests performed with the proposed probabilistic method, and with two hybrid approaches, on several symbolic regression benchmark problems show that the results are statistically better than the obtained by the traditional LGP.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here