A Probabilistic Programming Approach To Probabilistic Data Analysis

NeurIPS 2016 Feras SaadVikash K. Mansinghka

Probabilistic techniques are central to data analysis, but different approaches can be challenging to apply, combine, and compare. This paper introduces composable generative population models (CGPMs), a computational abstraction that extends directed graphical models and can be used to describe and compose a broad class of probabilistic data analysis techniques... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.