A provable SVD-based algorithm for learning topics in dominant admixture corpus

Topic models, such as Latent Dirichlet Allocation (LDA), posit that documents are drawn from admixtures of distributions over words, known as topics. The inference problem of recovering topics from admixtures, is NP-hard... (read more)

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
LDA
Dimensionality Reduction