A Provably-Efficient Model-Free Algorithm for Constrained Markov Decision Processes

3 Jun 2021  ·  Honghao Wei, Xin Liu, Lei Ying ·

This paper presents the first model-free, simulator-free reinforcement learning algorithm for Constrained Markov Decision Processes (CMDPs) with sublinear regret and zero constraint violation. The algorithm is named Triple-Q because it includes three key components: a Q-function (also called action-value function) for the cumulative reward, a Q-function for the cumulative utility for the constraint, and a virtual-Queue that (over)-estimates the cumulative constraint violation. Under Triple-Q, at each step, an action is chosen based on the pseudo-Q-value that is a combination of the three "Q" values. The algorithm updates the reward and utility Q-values with learning rates that depend on the visit counts to the corresponding (state, action) pairs and are periodically reset. In the episodic CMDP setting, Triple-Q achieves $\tilde{\cal O}\left(\frac{1 }{\delta}H^4 S^{\frac{1}{2}}A^{\frac{1}{2}}K^{\frac{4}{5}} \right)$ regret, where $K$ is the total number of episodes, $H$ is the number of steps in each episode, $S$ is the number of states, $A$ is the number of actions, and $\delta$ is Slater's constant. Furthermore, Triple-Q guarantees zero constraint violation, both on expectation and with a high probability, when $K$ is sufficiently large. Finally, the computational complexity of Triple-Q is similar to SARSA for unconstrained MDPs and is computationally efficient.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods