A quantum dynamic belief decision making model

6 Mar 2017  ·  Zichang He, Wen Jiang ·

The sure thing principle and the law of total probability are basic laws in classic probability theory. A disjunction fallacy leads to the violation of these two classical probability laws. In this paper, a new quantum dynamic belief decision making model based on quantum dynamic modelling and Dempster-Shafer (D-S) evidence theory is proposed to address this issue and model the real human decision-making process. Some mathematical techniques are borrowed from quantum mathematics. Generally, belief and action are two parts in a decision making process. The uncertainty in belief part is represented by a superposition of certain states. The uncertainty in actions is represented as an extra uncertainty state. The interference effect is produced due to the entanglement between beliefs and actions. Basic probability assignment (BPA) of decisions is generated by quantum dynamic modelling. Then BPA of the extra uncertain state and an entanglement degree defined by an entropy function named Deng entropy are used to measure the interference effect. Compared the existing model, the number of free parameters is less in our model. Finally, a classical categorization decision-making experiment is illustrated to show the effectiveness of our model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here