A Quantum-inspired Algorithm for General Minimum Conical Hull Problems

16 Jul 2019  ·  Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, DaCheng Tao ·

A wide range of fundamental machine learning tasks that are addressed by the maximum a posteriori estimation can be reduced to a general minimum conical hull problem. The best-known solution to tackle general minimum conical hull problems is the divide-and-conquer anchoring learning scheme (DCA), whose runtime complexity is polynomial in size. However, big data is pushing these polynomial algorithms to their performance limits. In this paper, we propose a sublinear classical algorithm to tackle general minimum conical hull problems when the input has stored in a sample-based low-overhead data structure. The algorithm's runtime complexity is polynomial in the rank and polylogarithmic in size. The proposed algorithm achieves the exponential speedup over DCA and, therefore, provides advantages for high dimensional problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here