A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices

This manuscript describes a technique for computing partial rank-revealing factorizations, such as, e.g, a partial QR factorization or a partial singular value decomposition. The method takes as input a tolerance $\varepsilon$ and an $m\times n$ matrix $A$, and returns an approximate low rank factorization of $A$ that is accurate to within precision $\varepsilon$ in the Frobenius norm (or some other easily computed norm)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet