A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments

15 Mar 2019Rui XiaVincent Y. F. TanLouis FilstroffCédric Févotte

We propose a novel ranking model that combines the Bradley-Terry-Luce probability model with a nonnegative matrix factorization framework to model and uncover the presence of latent variables that influence the performance of top tennis players. We derive an efficient, provably convergent, and numerically stable majorization-minimization-based algorithm to maximize the likelihood of datasets under the proposed statistical model... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet