A Regularity Theory for Static Schrödinger Equations on $\mathbb{R}^d$ in Spectral Barron Spaces

25 Jan 2022  ·  Ziang Chen, Jianfeng Lu, Yulong Lu, Shengxuan Zhou ·

Spectral Barron spaces have received considerable interest recently as it is the natural function space for approximation theory of two-layer neural networks with a dimension-free convergence rate. In this paper we study the regularity of solutions to the whole-space static Schr\"odinger equation in spectral Barron spaces. We prove that if the source of the equation lies in the spectral Barron space $\mathcal{B}^s(\mathbb{R}^d)$ and the potential function admitting a non-negative lower bound decomposes as a positive constant plus a function in $\mathcal{B}^s(\mathbb{R}^d)$, then the solution lies in the spectral Barron space $\mathcal{B}^{s+2}(\mathbb{R}^d)$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here