A Representational Model of Grid Cells' Path Integration Based on Matrix Lie Algebras

28 Sep 2020  ·  Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, Ying Nian Wu ·

The grid cells in the mammalian medial entorhinal cortex exhibit striking hexagon firing patterns when the agent navigates in the open field. It is hypothesized that the grid cells are involved in path integration so that the agent is aware of its self-position by accumulating its self-motion. Assuming the grid cells form a vector representation of self-position, we elucidate a minimally simple recurrent model for grid cells' path integration based on two coupled matrix Lie algebras that underlie two coupled rotation systems that mirror the agent's self-motion: (1) When the agent moves along a certain direction, the vector is rotated by a generator matrix. (2) When the agent changes direction, the generator matrix is rotated by another generator matrix. Our experiments show that our model learns hexagonal grid response patterns that resemble the firing patterns observed from the grid cells in the brain. Furthermore, the learned model is capable of near exact path integration, and it is also capable of error correction. Our model is novel and simple, with explicit geometric and algebraic structures.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here