A Resizable Mini-batch Gradient Descent based on a Multi-Armed Bandit

ICLR 2019 Seong Jin ChoSunghun KangChang D. Yoo

Determining the appropriate batch size for mini-batch gradient descent is always time consuming as it often relies on grid search. This paper considers a resizable mini-batch gradient descent (RMGD) algorithm based on a multi-armed bandit for achieving best performance in grid search by selecting an appropriate batch size at each epoch with a probability defined as a function of its previous success/failure... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet