A Scalable Asynchronous Distributed Algorithm for Topic Modeling

16 Dec 2014  ·  Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, S. V. N. Vishwanathan, Inderjit S. Dhillon ·

Learning meaningful topic models with massive document collections which contain millions of documents and billions of tokens is challenging because of two reasons: First, one needs to deal with a large number of topics (typically in the order of thousands). Second, one needs a scalable and efficient way of distributing the computation across multiple machines. In this paper we present a novel algorithm F+Nomad LDA which simultaneously tackles both these problems. In order to handle large number of topics we use an appropriately modified Fenwick tree. This data structure allows us to sample from a multinomial distribution over $T$ items in $O(\log T)$ time. Moreover, when topic counts change the data structure can be updated in $O(\log T)$ time. In order to distribute the computation across multiple processor we present a novel asynchronous framework inspired by the Nomad algorithm of \cite{YunYuHsietal13}. We show that F+Nomad LDA significantly outperform state-of-the-art on massive problems which involve millions of documents, billions of words, and thousands of topics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods