A Semi-Markov Switching Linear Gaussian Model for Censored Physiological Data

16 Nov 2016  ·  Ahmed M. Alaa, Jinsung Yoon, Scott Hu, Mihaela van der Schaar ·

Critically ill patients in regular wards are vulnerable to unanticipated clinical dete- rioration which requires timely transfer to the intensive care unit (ICU). To allow for risk scoring and patient monitoring in such a setting, we develop a novel Semi- Markov Switching Linear Gaussian Model (SSLGM) for the inpatients' physiol- ogy. The model captures the patients' latent clinical states and their corresponding observable lab tests and vital signs. We present an efficient unsupervised learn- ing algorithm that capitalizes on the informatively censored data in the electronic health records (EHR) to learn the parameters of the SSLGM; the learned model is then used to assess the new inpatients' risk for clinical deterioration in an online fashion, allowing for timely ICU admission. Experiments conducted on a het- erogeneous cohort of 6,094 patients admitted to a large academic medical center show that the proposed model significantly outperforms the currently deployed risk scores such as Rothman index, MEWS, SOFA and APACHE.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here