A semidefinite program for unbalanced multisection in the stochastic block model

20 Jul 2015  ·  Amelia Perry, Alexander S. Wein ·

We propose a semidefinite programming (SDP) algorithm for community detection in the stochastic block model, a popular model for networks with latent community structure. We prove that our algorithm achieves exact recovery of the latent communities, up to the information-theoretic limits determined by Abbe and Sandon (2015). Our result extends prior SDP approaches by allowing for many communities of different sizes. By virtue of a semidefinite approach, our algorithms succeed against a semirandom variant of the stochastic block model, guaranteeing a form of robustness and generalization. We further explore how semirandom models can lend insight into both the strengths and limitations of SDPs in this setting.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here