A Shuffling Framework for Local Differential Privacy

11 Jun 2021  ·  Casey Meehan, Amrita Roy Chowdhury, Kamalika Chaudhuri, Somesh Jha ·

ldp deployments are vulnerable to inference attacks as an adversary can link the noisy responses to their identity and subsequently, auxiliary information using the order of the data. An alternative model, shuffle DP, prevents this by shuffling the noisy responses uniformly at random. However, this limits the data learnability -- only symmetric functions (input order agnostic) can be learned. In this paper, we strike a balance and show that systematic shuffling of the noisy responses can thwart specific inference attacks while retaining some meaningful data learnability. To this end, we propose a novel privacy guarantee, d-sigma-privacy, that captures the privacy of the order of a data sequence. d-sigma-privacy allows tuning the granularity at which the ordinal information is maintained, which formalizes the degree the resistance to inference attacks trading it off with data learnability. Additionally, we propose a novel shuffling mechanism that can achieve \name-privacy and demonstrate the practicality of our mechanism via evaluation on real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here