A Simple Framework for 3D Occupancy Estimation in Autonomous Driving

The task of estimating 3D occupancy from surrounding-view images is an exciting development in the field of autonomous driving, following the success of Bird's Eye View (BEV) perception. This task provides crucial 3D attributes of the driving environment, enhancing the overall understanding and perception of the surrounding space. In this work, we present a simple framework for 3D occupancy estimation, which is a CNN-based framework designed to reveal several key factors for 3D occupancy estimation, such as network design, optimization, and evaluation. In addition, we explore the relationship between 3D occupancy estimation and other related tasks, such as monocular depth estimation and 3D reconstruction, which could advance the study of 3D perception in autonomous driving. For evaluation, we propose a simple sampling strategy to define the metric for occupancy evaluation, which is flexible for current public datasets. Moreover, we establish the benchmark in terms of the depth estimation metric, where we compare our proposed method with monocular depth estimation methods on the DDAD and Nuscenes datasets and achieve competitive performance. The relevant code will be updated in

Results in Papers With Code
(↓ scroll down to see all results)