A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

31 Dec 2015  ·  Namig J. Guliyev, Vugar E. Ismailov ·

The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted... In this paper, we consider constructive approximation on any finite interval of $\mathbb{R}$ by neural networks with only one neuron in the hidden layer. We construct algorithmically a smooth, sigmoidal, almost monotone activation function $\sigma$ providing approximation to an arbitrary continuous function within any degree of accuracy. This algorithm is implemented in a computer program, which computes the value of $\sigma$ at any reasonable point of the real axis. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.